
Digital Odometer, Fox Cougar T-Bird

Quick Answers

A) How to make the mileage of one cluster become the mileage of another

cluster?

You would want to do this if you swapped your current cluster from one pulled from

a junkyard. You would want the mileage on your current cluster transferred over to
the new cluster. There are two ways to do this:

1) Remove the memory chip from your current cluster and put it into the new

cluster. The memory chip is the 14 pin DIP integrated circuit. The chip can be
neatly unsoldered from the board, or you can cheat by delicately clipping the

leads at the top of the chip and resolder it onto the replacement board.

2) A second much more involved way to do this is to reprogram the device. The
memory integrated circuit will have to be removed to accomplish this, as

reprogramming the device in-circuit is not really possible. One advantage is any
mileage could actully be entered.

B) How to zero the odometer, or reset the mileage to xxxxx miles?

There is no jumper reset or in-cluster method of resetting the odometer value. The
nonvolatile memory integrated circuit must be removed and put in some form of test

jig where the programming lines must be stepped through to set the memory to new
values. This requires a method of reading(1 line) and writing (5 lines) digital TTL

level signal lines to the integrated circuit. The value stored is the mileage contained
over two 16 bit words. The upper three bits of each 16 bit words are parity values,

which are still not known how to calculate precisely. But for the 0 value odometer
case, all 3 parity bits of each word are 1’s.

Functional Description

The digital odometer is actually a submodule inside the electronic cluster that
provides the speedometer, trip, and odometer functions.

A detailed view of the speedometer/odometer is shown below:

PC Board Stack

Display Driver Board (in view)

Light Illuminator Plate

Liquid Crystal Display

(Not Visible- Below Illuminator Plate)

Processor Board (on bottom)

The odometer submodule shown above consists of:
1) a light illuminator plate which contains green film to provide the green light

coloring of the display and to disperse the light from two illuminator bulbs to

provide backlighting for the liquid crystal display (LCD)
2) a liquid crystal display with clear brown flex interconnect PC board

3) a display driver board, containing two large Motorola integrated circuits that
serve to drive the LC display.

4) a processor board, containing a Motorola the processor running at 4 MHz which
counts the pulses coming from the speedometer gear mounted in the

transmission housing, and stores the data in a Nitron/NCR nonvolatile 14 pin DIP
RAM chip that has 16 memory locations that are each 16 bits wide.

A detailed view of the board devices are shown below:

LC Display Interconnect

Flex PC Board (4)

Mototrola

71001DC

185

QD8712

Mototrola

71001DC

185

QD8713

4 MHz

Crystal

NCR 52801

N7700020FMNABA

8712A M473290

TI

8652BB

70009BB

Motorola

FL1JA7811

1983 FordM

7600010FKN054

TBIRD SPEEDO

5V Regulator

Yellow- Trip Button

Gap

Black- Ground

White- English/Metric Button

Blue- Reset Button

Orange - Speed Button

To Wired Black Header

Connector to Front Cluster

Switches

J1

1- 12V

2- 12V

3- Gnd

4- English=5V / Metric=0V

5- ?

6- Speed Sensor Input

1

Flex PC

Board to

Cluster PC

IC2

IC3

IC4

IC1

IC5

IC6

Flex PC Board Interconnect

Digital Data to Display Board

(Data from Pins 33-36 of IC2)

Display BoardPrimary Speedo Processor Board

Reference

Designator Value

RA1 10k

RB1 Open

R43 10k

W2 (Short this

for >85MPH)

R52 10k

W3 Open

W4 Open

R53 10k

C3 .01

.

.

.

NVRAM 14DIP

8DIP

40DIP

40DIP

40DIP

Memory was a rarer commodity back in the 1980’s (remember the IBM XT was
introduced with a whopping 64 kbytes of RAM in 1983). Even more rare is memory

that can hold its values when power is removed, making it a special class of memory
known as nonvolatile random access memory, or NVRAM. Even today, nonvolatile

memory (such as that used with USB thumb drives) does have a limited life. When a
certain age and number of writes is reached, the memory will begin wearing out, no

longer retaining the stored values. This was even more the case for the early
memory used in the Cougar/T-Bird odometers, as memory semiconductors in the

80’s was more crude than todays manufacturing standards. The specification of the

odometer memory is typically with 5000 writes, the memory will last 8-12 years, and
with 12000 writes the expected lifetime drops to 4-6 years.

Because of concerns of the memory lifetime for a vehicle application, Ford had

engineering try to make the odometer as robust as possible. This is done by not
continually writing the data to the same location, but rather rotate among several

locations. The odometer has 8 location pairs that it steps thru, updating the data
every 10 miles when moving or whenever the ignition key is turned off. So if you

have a car with over 200,000 miles, the data is spread over 8 rotating locations that
most likely have been written to over 2500 times, still within the typical memory

specification. The details of this data location rotation in order to ensure odometer
integrity is explained in two Ford Motor Company patents, # 4,710,888 and

4,803,646.

The memory in the odometer is manufactured by NCR (National Cash Register). This
company was located in Dayton, Ohio, and was a major player in the early days of

computers (http://www.thecorememory.com/) going all the way back to World War
II participating in encryption technology, and even earlier with its mechanical cash

register machines. Its since has gone through multiple splits and changes, and from
what I can tell, the memory group became Symbios, which eventually was purchased

by Hyundai and likely disbanded.

The data sheet of the memory device was obtained from a lucky person who actually
still had a 1985 NCR data book, and was very kind enough to provide a data sheet

on the NCR 52801 256 Bit (16x16) SNOS (Silicon-Nitride-Oxide-Silicon) 125Khz
memory. Each memory location is 16 bits wide, and there are 16 different locations

available in the memory in the odometer. Since it takes 32 bits to hold one

odometer value, there are 8 possible write location pairs. Each 16 bit word uses the
upper three bits for parity. Parity is a function that uses the 13 data bits of each

word and derives a bit to be used as a check value to ensure the data bits have not
been corrupted. One method of parity is two count the number of one values

occurring in the 13 data bits, and if the sum is even, your parity bit is then a one, if
it is odd, then the parity bit is a zero. The problem with having just one parity bit is

if there are two errors that say a one went to a zero, and a second errored bit which
a zero became a one, then the parity would be the same and an error would not be

discovered. For this reason, Ford engineers uses a method where 3 bits are used
for 13 bits, likely more ensuring an error be discovered.

I have not figured out how the parity bits are calculated, and this would be a nice

puzzle for someone who is looking for a problem to solve.

The data is stored in miles, with 0.0625 mile resolution. This was determined by

taking snapshots of the memory values at given mileages and looking how the bits
varied with mileage.

The following is the format:

The first MSB 16 bit word has data bits 15 to 0. Bits 12 to 0 represent the mileage

with bit 12 being the 2^21 MSB value and bit 0 being the 2^9 value.

21 20 19 18 17 16 15 14 13 12 11 10 9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 Bit Word #1

Upper Data BitsParity

The remaining mileage (bits 2^8 and below) are represented in a second 16 bit
word:

8 7 6 5 4 3 2 1 0 -1 -2 -3 -4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 Bit Word #2

Lower Data BitsParity

In this second word, bits 12 to 0 represent the mileage with bit 12 being the 2^8
value and bit 0 being the 2^(-4) value. The upper 3 bits of these two sixteen bit

words are parity bits for the word. It does not appear that there is parity between
the two words, rather the parity bits in a single 16 bit word are just for the 16 bits

and are not interrelated to the other 16 bit word. The mileage stored is actually the
mileage times 10, probably to get the tenth mile display readout without doing a lot

of math.

So in other words, be example, the value stored for 12.75 km is given by a bit
sequence of:

Power of 2 Miles Bit Subtotal

21 2097152 0 0

20 1048576 0 0

19 524288 0 0

18 262144 0 0

17 131072 0 0

16 65536 0 0

15 32768 0 0

14 16384 0 0

13 8192 0 0

12 4096 0 0

11 2048 0 0

10 1024 0 0

9 512 0 0

8 256 0 0

7 128 0 0

6 64 1 64

5 32 0 0

4 16 0 0

3 8 1 8

2 4 1 4

1 2 1 2

0 1 1 1

-1 0.5 1 0.5

-2 0.25 0 0

-3 0.125 1 0.125

-4 0.0625 1 0.0625

Stored Value 79.6875

Divide by 10 7.96875 Miles

12.75 Km

This would be stored as:

Word #1: ppp0000000000000
Word #2: ppp0010011111011

Where ppp are the parity values for each word, which at this point I don’t know how
to calculate.

Some typical values are shown below, where the true parity values read from

memory are shown (the yellow columns) for a given observed mileage read-out on
the display:

Observed Calculated

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 Kilometers Kilometers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 12.7 12.8

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 104462.5 104462.5

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 104463.5 104463.5

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 104466.0 104466.1

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 104466.1 104466.1

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 104466.2 104466.3

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 104466.2 104466.2

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 104466.7 104467.0

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 104466.9 104466.9

0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 104480.0 104480.0

0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 109899.9 109899.9

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 162623.9 162624.0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 162631.0 162631.1

16 Bit Word #1 16 Bit Word #2

Upper Data Bits Lower Data BitsParity Parity

I guessed the parity values to be 111, when the data values are all 0 and this was

correct, producing a 0 miles value on the display. Note if the parity bits are wrong,
the odometer will read “Error” and the odometer will not function.

